Package: xrnet 1.0.0

Garrett Weaver

xrnet: Hierarchical Regularized Regression

Fits hierarchical regularized regression models to incorporate potentially informative external data, Weaver and Lewinger (2019) <doi:10.21105/joss.01761>. Utilizes coordinate descent to efficiently fit regularized regression models both with and without external information with the most common penalties used in practice (i.e. ridge, lasso, elastic net). Support for standard R matrices, sparse matrices and big.matrix objects.

Authors:Garrett Weaver [aut, cre], Dixin Shen [aut], Juan Pablo Lewinger [ctb, ths]

xrnet_1.0.0.tar.gz
xrnet_1.0.0.zip(r-4.5)xrnet_1.0.0.zip(r-4.4)xrnet_1.0.0.zip(r-4.3)
xrnet_1.0.0.tgz(r-4.4-x86_64)xrnet_1.0.0.tgz(r-4.4-arm64)xrnet_1.0.0.tgz(r-4.3-x86_64)xrnet_1.0.0.tgz(r-4.3-arm64)
xrnet_1.0.0.tar.gz(r-4.5-noble)xrnet_1.0.0.tar.gz(r-4.4-noble)
xrnet_1.0.0.tgz(r-4.4-emscripten)xrnet_1.0.0.tgz(r-4.3-emscripten)
xrnet.pdf |xrnet.html
xrnet/json (API)
NEWS

# Install 'xrnet' in R:
install.packages('xrnet', repos = c('https://uscbiostats.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/uscbiostats/xrnet/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • ext_linear - Simulated external data
  • x_linear - Simulated example data for hierarchical regularized linear regression
  • y_linear - Simulated outcome data

On CRAN:

4.65 score 10 stars 10 scripts 190 downloads 7 exports 9 dependencies

Last updated 4 months agofrom:682eba69d8. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-win-x86_64OKNov 13 2024
R-4.5-linux-x86_64OKNov 13 2024
R-4.4-win-x86_64OKNov 13 2024
R-4.4-mac-x86_64OKNov 13 2024
R-4.4-mac-aarch64OKNov 13 2024
R-4.3-win-x86_64OKNov 13 2024
R-4.3-mac-x86_64OKNov 13 2024
R-4.3-mac-aarch64OKNov 13 2024

Exports:define_enetdefine_lassodefine_penaltydefine_ridgetune_xrnetxrnetxrnet_control

Dependencies:BHbigmemorybigmemory.sricodetoolsforeachiteratorsRcppRcppEigenuuid